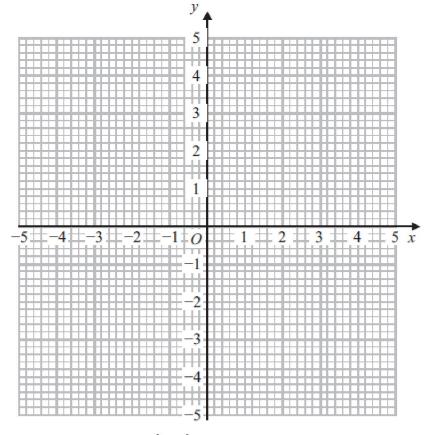
ADA PINPOINT TOPIC PACKS

(1)Equation of a circle (4 Qns)
(2)Perpendicular Lines and the equation of a tangent (1 (3)Circles and Squares Problems (1 Qns)
(4)Midpoints (2 Qns)
(5)Midpoints and endpoint problems (0 Qns)
(6)Circle Theorems (5 Qns)

40_to_100_Percent_Pinpoint_AI_Pack

Time Allocation = 40mins , Max = 35 Marks

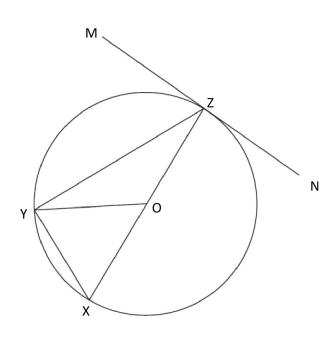

Calculated Grade Boundaries:

Grade	Marks
4-	2
4 4+	2 4
4+	6
5-	8
5- 5 5+ 6- 6	10
5+	12
6-	14
6	16
6+ 7-	18
7-	20
7	22
7+	22 24 26
7+ 8- 8	26
8	28

8+	30
9-	32
9	34
9+	35

Question 1 (AO1): (No Calc) 34% of students got this right (2 marks)

19.



(a) On the grid, draw the graph of $x^2 + y^2 = 4$

(2)

Question 2 (AO3): (No Calc) 29% of students got this right (4 marks)

17

X, Y and Z are points on the circumference of a circle centre O.

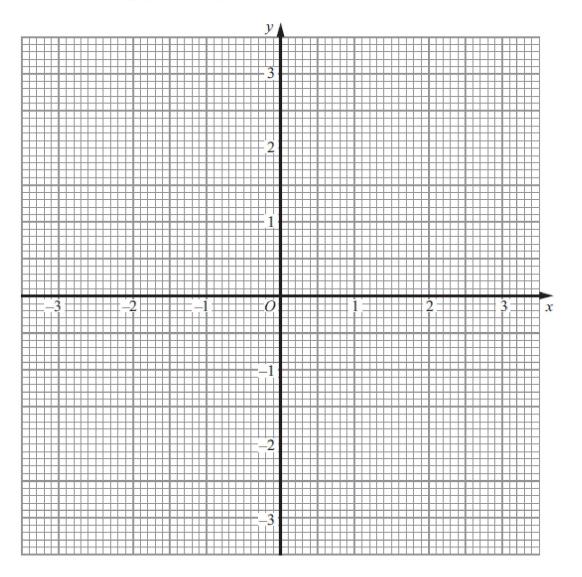
NZM is a tangent to the circle.

Angle $YZM = 54^{\circ}$

Find the size of angle *XOY*. You must give a reason for each stage of your working.

Question 3 (AO3): 26% of students got this right (4 marks)

8 A square, with sides of length *x* cm, is inside a circle. Each vertex of the square is on the circumference of the circle.


The area of the circle is 49 cm^2 .

Work out the value of *x*. Give your answer correct to 3 significant figures.

(Total for Question 8 is 4 marks)

Question 4 (AO1): (No Calc) 19% of students got this right (5 marks)

21. (a) Construct the graph of $x^2 + y^2 = 9$

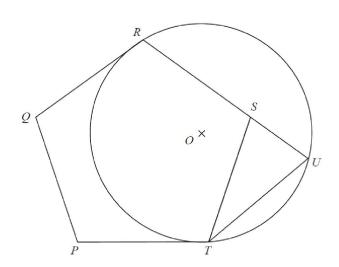
(b) By drawing the line x + y = 1 on the grid, solve the equations $x^2 + y^2 = 9$ x + y = 1

Question 5 (AO3): 17% of students got this right (3 marks)

21. The points A, B and C lie in order on a straight line.

The coordinates of *A* are (2, 5)The coordinates of *B* are (4, p)The coordinates of *C* are (q, 17)

Given that AC = 4AB, find the values of p and q.

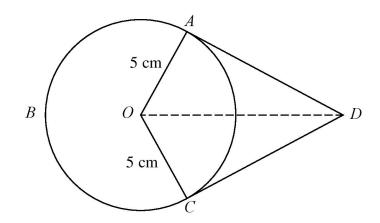

p =

q =

(Total 3 marks)

Question 6 (AO3): 15% of students got this right (5 marks)

20

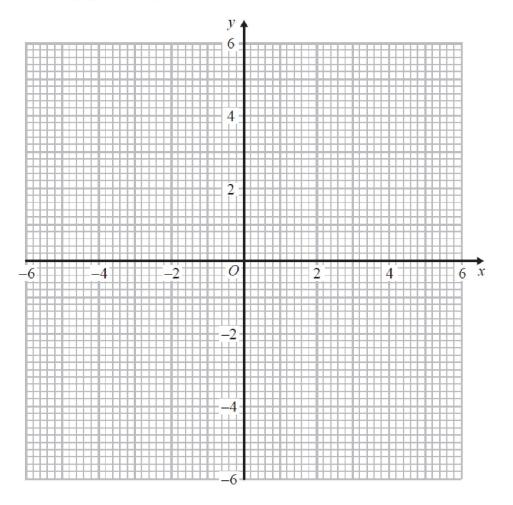


PQRST is a regular pentagon.R, U and T are points on a circle, centre O.QR and PT are tangents to the circle.RSU is a straight line.

Prove that ST = UT.

Question 7 (AO3): 14% of students got this right (5 marks)

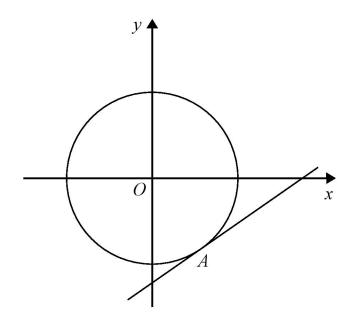
18


A, B and C are points on a circle of radius 5 cm, centre O. DA and DC are tangents to the circle. DO = 9 cm

Work out the length of arc *ABC*. Give your answer correct to 3 significant figures.

(Total for Question 18 is 5 marks)

Question 8 (AO1): 13% of students got this right (2 marks)

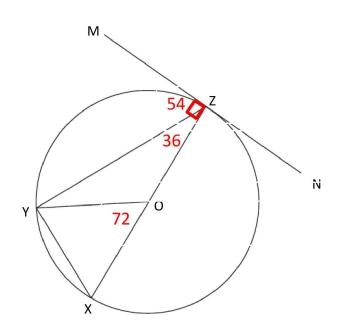

28 (a) Construct the graph of $x^2 + y^2 = 25$.

(2)

Question 9 (AO2): 9% of students got this right (5 marks)

22 The diagram shows the circle with equation $x^2 + y^2 = 261$

A tangent to the circle is drawn at point A with coordinates (p, -15), where p > 0


Find an equation of the tangent at A.

Answers to Qn 1 (AO1): (No Calc) 34% of students got this right

Question	Working	Answer	Mark	Notes
19. (a)		Circle, centre <i>O</i> ,	2	B2 cao
		1: 2		
		radius 2		(B1 for a circle radius 2 any centre or for a circle or part of a circle contra $(0, 0)$
				for a circle or part of a circle centre $(0, 0)$ any radius)
				any radius)
	Question Ord	er Created by Pinpo	int Learr	ings Automatic Differentiation Algorithm

Answers to Qn 2 (AO3): (No Calc) 29% of students got this right

17

X, *Y* and *Z* are points on the circumference of a circle centre *O*.

NZM is a tangent to the circle.

Angle $YZM = 54^{\circ}$

Find the size of angle *XOY*. You must give a reason for each stage of your working.

Diameter intersects tangent at 90° So YZO = $90 - 54 = 36^{\circ}$

Angle subtended to center double that at circumference So $XOY = 2 \times 36 = 72^{\circ}$

(Total for Question 17 is 4 marks)

Question Order Created by Pinpoint Learnings Automatic Differentiation Algorithmn

Answers to Qn 3 (AO3): 26% of students got this right

Question 8 (Total 4 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
	Square with side x and circle with radius r	M1	This mark is given for a method to find <i>r</i>
	$\pi r^2 = 49, r^2 = \frac{49}{\pi}$		
	$(2r)^{2} = x^{2} + x^{2},$ $4r^{2} = 2x^{2}$ $2r^{2} = x^{2}$	M1	The mark is given for use of Pythagoras to set up an equation in x^2
	$\frac{98}{\pi} = x^2$	M1	This mark is given for a method to rearrange to find a value for x^2
	5.59	A1	5.5 to 5.6

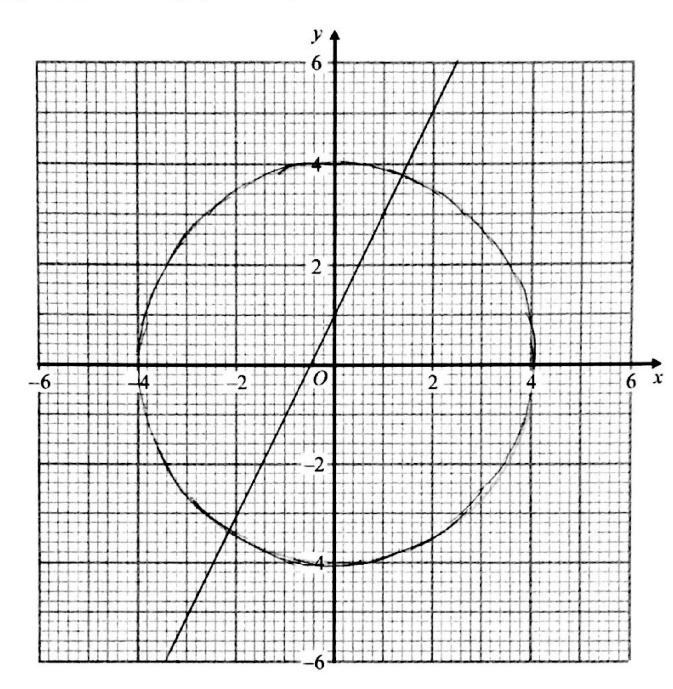
Answers to Qn 4 (AO1): (No Calc) 19% of students got this right

Ques	stion	Working	Answer	Mark	Notes
21.	(a) (b)	working	Answer Circle, centre O , radius 3 x = 2.6, y = - 1.6 or x = -1.6, y = 2.6	2 3	M1 for a complete circle centre (0, 0) A1 for a correct circle within guidelines M1 for $x + y = 1$ drawn M1 (dep) ft from (a) for attempt to find coordinates for any one point of intersection with a curve or circle
					A1 for $x = 2.6$, $y = -1.6$ and $x = -1.6$, $y = 2.6$ all ± 0.1

Answers to Qn 5 (AO3): 17% of students got this right

Question	Working	Answer	Mark	Notes
21		p = 8, q =	3	M1 for finding the difference
		10		between the <i>x</i> or <i>y</i> coordinates
				eg $4-2 (= 2)$ or $17-5 (= 12)$
				M1 for a complete method to find the values of p or q
				A1 cao

Answers to Qn 6 (AO3): 15% of students got this right


Paper 1MA1: 2H				
Question	Working	Answer	Notes	
20		proof	M1	for method to find interior or exterior angle of regular pentagon
	ightarrow QRO = ightarrow OTP = 90 The tangent to a circle is perpendicular (90°) to the radius (diameter)		M1	for using angle between tangent and radius
	$\sim ROT = 540 - 2 \times 90 - 2 \times 108 (= 144)$		M1	for method to find angle <i>ROT</i>
	$ ightarrow RUT = 144 \div 2 (= 72)$ The angle at the centre of a circle is twice the angle at the circumference		C1	for method to find angle <i>RUT</i> with reason
	Base angles of an isosceles		C1	for deduction that $ST = UT$ with

Answers to Qn 7 (AO3): 14% of students got this right

Question 18 (Total 5 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
	$OAD = OCD = 90^{\circ}$	P1	This mark is given for recognising that <i>OAD</i> or <i>OCD</i> is a right angle 90° or right angle
	$\cos DOC = \cos DOA = \frac{5}{9}$	P1	This mark is given for using trigonometry to set up an equation in <i>DOA</i> or <i>DOC</i>
	$DOC = DOA = \cos^{-1}\frac{5}{9} = 56.25^{\circ}$	P1	This mark is given for using inverse trigonometry to find the size of the angle <i>DOA</i> or <i>ADO</i>
	$\frac{360-(2\times56.25)}{360}\times2\pi\times5$	P1	This mark is given for a complete process to find the arc length <i>ABC</i>
	21.6	A1	This mark is given for an answer in the range 21.5 to 21.65

Answers to Qn 8 (AO1): 13% of students got this right 28 (a) On the grid, construct the graph of $x^2 + y^2 = 16$

Answers to Qn 9 (AO2): 9% of students got this right

Question	Working	Answer	Mark	Notes
22		y = 0.4x - 17.4	P1	for process to find <i>p</i> , e.g. $\sqrt{261-15^2}$
			P1	for process to find gradient of <i>OA</i> , e.g. $-15 \div 6 (=\frac{-5}{2})$
			P1	(dep on previous P1) for process to find the perpendicular gradient using $-\frac{1}{m}$ or states gradient as $\frac{2}{5}$
			P1	for process to find the <i>y</i> - intercept of the gradient, e.g. $-15 = \frac{2}{5} \times 6 + c$
			A1	oe